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lie describe a procedure that uses incomplete data to estimate failure rate
and survival functions. Although the procedure is designed for discrete distri-
butions, it aplies in the continuous case also.

,Our description is expository and therefore contains no proofs: the), are pro-
vided by Mimmack (1985).

The nrocedure is based on the assumption of a piecewise constant failure

rate. The resultant survival function estimator is a piecewise geometric function,

denoted the Piecewise Geometric Estimator (PEGE). The PEGE is the discrete ver-

sion of the piecewise exponential estimators proposed independently by Kitchin,
Langberg and Proschan (1983) and Whittemore and Keller (1983), and it is a
generalization of an estimator of Umholtz (1984) who considers complete data

taken from an exponential distribution.



20. ABSTRACT (Continued)

The PEGE is consistent and asymptotically normal under conditions more
general than those of the model of random censorship. Although the PEGE and the
widely used Kaplan-Meier estimator (KNE) are asymptotically equivalent and

-.. generally interlace, the PEGE is expected to perform better than the KME in
terms of small sample properties.

The PEGE is attractive to users because it is computationally simple and
realistic in that it decreases at every possible failure time: it therefore
not only has the appearance of a survival function, but also provides a realistic
estimate of the failure rate function. The KME, in contrast, is a step function.
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Section 1: Introduction and Summary

The problem of estimating survival probabilities from incomplete data is

well known in the fields of reliability, medicine, biometry and actuarial science.

The general situation is described as follows. The variable of interest is the

lifespan of some unit: the investigator wishes to estimate the probability of

survival beyond any given time. To this end, n identical units are placed

"on test". Each item is either observed until failure, resulting in an uncen-

sored observation, or is removed from the test before failure, resulting in a

censored observation. Thus the data available consist of a number of lifelengths

and a number of truncated lifelengths: the statistical problem is to estimate

the probability distribution of the lifelengths.

The various statistical approaches to the problem can generally be classified

according to the restrictiveness of the model assumed and the type of information

utilized. At one extreme are purely parametric procedures, which involve

assuming that the underlying life distribution belongs to a specific parametric

family. These procedures utilize interval information. The Bayesian estimator

described by Susarla and Van Ryzin (1976) makes allowance for both parametric

and nonparametric models: the type of information utilized depends on the

assumptions about the prior distribution. As our approach to the problem is

neither parametric nor Bayesian, we do not consider these procedures further but

concentrate on nonparametric procedures.

Nonparametric procedures range in sophistication from the well-known

actuarial estimator, which is a step function constructed from ordinal infor-

mation alone, to the piecewise polynomial estimators of Whittemore and Keller .

(1983) that utilize interval information. The most widely used nonparametric

estimators are those of Kaplan and Meier (1958) and Nelson (1969). These

1 °
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We describe a procedure that uses incomplete data to estimate failure rate

and survival functions. Although the procedure is designed for discrete distri-

butions, it applies in the continuous case also.

Our description is expository and therefore contains no proofs: they are -

provided by Mimmack (1985).

The procedure is based on the assumption of a piecewise constant failure

rate. The resultant survival function estimator is a piecewise geometric function,

denoted the Piecewise Geometric Estimator (PEGE). The PEGE is the discrete ver-

sion of the piecewise exponential estimators proposed independently by Kitchin,

Langberg and Proschan (1983) and Whittemore and Keller (1983), and it is a

generalization of an estimator of Umholtz (1984) who considers complete data

taken from an exponential distribution.

The PEGE is consistent and asymptotically normal under conditions more

general than those of the model of random censorship. Although the PEGE and the

widely used Kaplan-Meier estimator (KME) are asymptotically equivalent and

generally interlace, the PEGE is expected to perform better than the KME in

terms of small sample properties.

The PEGE is attractive to users because it is computationally simple and

realistic in that it decreases at every possible failure time: it therefore not

only has the appearance of a survival function, but also provides a realistic

estimate of the failure rate function. The KNE, in contrast, is a step function.
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estimators are also step functions constructed from ordinal information. Their

properties are described by Efron (1967), Breslow and Crowley (1974), Petersen

(1977), Aalen (1976, 1978), Kitchin, Langberg and Proschan (1983), Nelson (1972),

- Fleming and Harrington (1979), and Chen, Hollander and Langberg (1982).

One of the by-products of the estimation process is an estimate of the

failure rate function: here, another issue is raised. It is evident that sur-

vival function estimators that are step functions do not provide useful failure

rate function estimators: Miller (1981) mentions smoothing the Kaplan-Meier

* estimator for this reason and summarizes the development of other survival func-

* tion estimators that may be obtained by considering a special case of the regres-

sion model of Cox (1972). These estimators generally correspond to failure rate

function estimators that are step functions and utilize at most part (but not all)

of the interval information contained in the data. Whittemore and Keller (1983)

give several more refined failure rate function estimators that are step functions

and utilize full interval information. They also describe even more complex

estimators that utilize full interval information: however, these are not compu-

tationally convenient compared with their simpler estimators. It seems, from

their work, that a successful rival of the Kaplan-Meier estimator should be only

marginally more complex than it (so as to be computationally convenient and yet

yield a useful failure rate function estimator) and also should utilize more than

ordinal information.

In Section 2, we propose an estimator that not only provides a reasonable

failure rate function estimator but also utilizes interval information. More-

-- over, it is computationally simple. Our estimator is a discrete counterpart of

*. two versions of a continuous estimator proposed independently by Kitchin, Langberg

and Proschan (1983) and Whittemore and Keller (1983). The motivation for the

construction of our estimator is the same as that of the former authors, and our

. . . . .. ; . ; ,./,.,.- .-,. ... ..-..,. .,-.-... ..,. .,.. ..,..... ............,.... . ... ...... . . . . .. .
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model is the discrete version of theirs: in contrast, the latter authors assue

* the more restrictive model of random censorship and obtain their estimator by

the method of maximum likelihood. This provides an alternative method of deriv-

ing our estimator.

The remaining sections are concerned with properties of our estimator. As

this presentation is expository, proofs are omitted: Mimmack (1985) provides

* proofs.

In Section 3, we explore the asymptotic properties of our estimator under

increasingly restrictive models. Our estimator is strongly consistent and

asymptotically normal under conditions more general than those typically assumed.

Section 4 deals with the relationships among our estimator, the Kaplan-

Meier estimator, and the above-mentioned estimator of Kitchin et al. and

Whittemore and Keller. The section ends with an example using real data.

In Section 5, we continue the comparison of the new estimator and the

Kaplan-Meier estimator: since the properties of the new estimator are expected

to resemble those of its continuous counterparts, we discuss the implications

of simulation studies designed to investigate the small sample behaviour of

these estimators. We also present the results of a Monte Carlo pilot study

idesigned to investigate the small sample properties of our estimator.

Section 2: Preliminaries.

In this section we formulate the problem in statistical terms and define

our estimator.

Let X denote the lifelength of a randomly chosen unit, where X has distri-

bution function G. Suppose that n identical items are placed on test. The

resultant sample consists of the pairs (Z1 ,61), ..., (Z n,6 ), where Zi represents
.. n n

.- .- .. . j .... .. . .. .. . . , ' . ' .' . . . . .. ... . ... . ....... .. .
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ii"' the time for which unit i is observed and 6. indicates whether unit i fails
1

while under observation or is removed from the test before failure. Symbolically,

* for i =1, ... , n, we have:

o X. = lifelength of unit i, where X. has distribution G,

Yi = time to censorship of unit i,

Z= min(Xi,Yi),

a. - I(Xi 5Yi).

(Xlgl, .. , (Xn ,Yn) are assumed to be independent random pairs. Elements

of a pair Xi and Yi, where i = 1, ..., n, are not assumed to be independent.

We assume that the lifelength and censoring random variables are discrete.

* Let X = {,x 2,...} denote the set of possible values of X and Y = {ylY2,...

. denote the union of the sets of possible values of Y1, Y2 P ""' where Y _ X.

The survival probabilities of interest are denoted P(X> xk), k = 1, 2, .

*. where P(X>xk) = (xk) = I - G(xk), k 1, 2,....

It is evident that this formulation differs from that of the model of

random censorship which is generally assumed in the literature, and in parti-

cular, by Whittemore and Keller (1983). These authors assume that the lifelength

.* and censoring random variables are continuous, that the corresponding pairs X1

and Y. where i = 1, 2, ... , are independent, and that the censoring random vari-

ables are identically distributed. Although Kaplan and Meier (1958) assume

- only independence between corresponding lifelength and censoring random variables,

- Breslow and Crowley (1974), Petersen (1977), Aalen (1976, 1978), and others --

all of whom describe the properties of the Kaplan-Meier estimator -- assume also

that the censoring random variables are identically distributed. Our formulation

is the discrete counterpart of that of Kitchin, Langberg and Proschan (1983):

likewise, our estimator is the discrete counterpart of theirs.

. 7.
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Before describing our estimator, we give the notation required.

Let nI be the random number of distinct uncensored observations in the

sample and let tI < t2 < ... < t denote these distinct observed failure

times, with to - 0. Let n2 be the random number of distinct censored obser-

vations in the sample and let sl 1 s2 < ... < Sn2 denote these times, with

so 0.

Let D. be the number of failures observed at time t.:
1 1

n
D. = I I(Z.=t. 5=l) for i = 1, ... , n1

j=l i 1 = 3

Let Ci be the number of censored observations equal to s

n
C = l I6(Z=s =0) for i =1, ... , n2.

j=l (z~i 1"3

Let Fnt) = 1 - F (t) denote the proportion of observations thatn n
exceed t:

F ) M n
Fn t = -j~lI(Zj>t) for t e [0,o).

Let FnI(t) denote the proportion of failures observed at or before t:in
1 , n
F (t) I - lI(Z.5t, 6.=1) for t e [0,-).
n n. j 3

Let T. be a measure of the total time on test in the interval1

i(tlt i]:

Ti  #{m: ti_1 < x !t i } (nFn(t i ) + Di )

+ I #{m: til<XSk}Ck for i = 1, ... , ,[..k:ti <Sk<t.i-

i-l k1
where #A denotes the cardinality of the set A.

. . . .



6

1Tf failure and censoring random variables are lattice random variables, the

T. is the total time on test in (t i-l1t]. In general, however, T. increases

by one unit whenever an item on test survives an interval of the form

(xjlX.j], where ti I < xj_1 < x < ti, irrespective of the distance between

Sj I and xj.)

We now construct our estimator. Expressing the survival function G in

terms of the failure rates P(X = xklX xk), k = 1, 2, ..., we have:

k
(2.1) P(X>xk) = T['l-P(X=xj.X xj)] for k = 1, 2,...

j=l

It is evident from (2.1) that we may estimate our survival function at

xk from estimates of the failure rates at xI , x2, ... , xk . In the experimental

situation, failures are not observed at all the times xl, x2, ... so specific

*information about the failure rates at many of the possible failure times is

not available. Having observed failures at tl, t2, ..., t nl, we find it

simple to estimate the failure rates P(X=tilX!ti), i = 1, ..., n . However,

the question of how to estimate the failure rates at the intervening possible

failure times requires special consideration.

One approach -- that of Kaplan and reier (1958), Nelson (1969) and

others -- is to estimate the failure rates at these intervening times as zero

since no failures are observed then. However, not observing failures at

some possible failure times may be a result of being in an experimental situ-

ation rather than evidence of very small failure rates at these times, so we

discard this approach and consider nonzero estimates.

It is reasonable to assume that the underlying process possesses an

element of continuity in that adjacent failure rates do not differ radically

-o. . .., -'..-. . , % ° .. . . ".•. . -. - *..r .* o". . . .'.'.... . . -. .. . -°-•-. " . . " .°
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from one another. Thus we consider using the estimate of the failure rate at
t. to estimate the failure rate at each of the possible failure times between

.| 1

-ti 1 and ti, where i = 1, ... , n1. We are therefore assuming that our approx-

.* imating distribution has a constant failure rate between the times at which

failures are observed -- that is:

(2.2) P(X=Xk X-xk) =i for t. 1 < Xk < t i = 1, ... ,

where

qi = P(X=tiIXt i) for i = 1, ..., n .

Substituting (z.2) into (2.1), we obtain:

#{m:t. <x } i-l #{m:t. .<x m<t}
(2.3) P(X>xk) = (l-i) :i-l<m<k (l-ij) jj=l

for ti I < x k  ti =, .. n

We note that the property of having constant failure rate on X character-

izes a family of geometric distributions defined on X. In particular, the

failure rates ql, ... , qnI identify n, geometric distributions G1 ...., G
1I

defined on X. The survival functions, G "' G , have the geometric form:
n

(2.4) Gi(xk) = (l-qi)k for k = 1, 2, ... and i = 1 ... , nI.

Inspection of (2.3) and (2.4) reveals that our estimating function is

constructed from the geometric survival functions G1. ".'P GnI, where Gi is used

in the interval (t i-1 ti], i = 1, ... , n . Consequently, the estimator (2.3)

*is called the Piecewise Geometric Estimator (PEGE).
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It remains to define estimators of the failure rates ql, ... q
1

This was originally done by separately obtaining the maximum likelihood

estimators of the parameters of n1 truncated geometric distributions: the pro-

cedure is outlined at a later stage because it utilizes the geometric structure

of (2.3) and therefore provides further motivation for the name "PEGE". A

more straightforward but less appealing approach is to obtain the maximum like-

lihood estimates of ql, "" qn1 directly: denoting by L the likelihood of

the sample, we have:

L - T[P(X=ti) I {T [P(X>sj) }
i=l ~

Substituting (2.3) into this expression and differentiating yields the unique

maximum likelihood estimates

qi = Di/Tip i =,..., nI.

ii

* Substituting q1,., qn into (2.3), we finally obtain our estimator, formally

defined as follows.

Definition 2.1. The Piecewise Geometric Estimator (PEGE) of the survival

function of the lifelength random variable X is defined as follows:

for xk 5 0 or n =0.

#{m:t i-<X m5Xk - #{m:t <x<t }
(1 - D./T i ) i(1 - D-/T)

S ii j=l

for t ni n 1' 1 .
P(X>xk) = <il Xk _ ti, i = 1, n n > 0

".1 #{mt_ <x-<t. }

iT(1-D/T. j-i xm!5jD' ":" ~j=l ID/j

for xk > tn1, n I > 0.



The alternative derivation of the PEGE emphasizes its geometric structure.

it turns out that 41, ..., qn, defined above are maximum likelihood estimators

of the parameters of the truncated geometric distributions G*, G* defined
n1

below.

For i = 1, ... , n1 we formulate the following definitions:

Let N. = #{m: t il'xm<ti) be the number of possible times of failure in

the interval (ti-l, ti and let X* be the number of possible times of failure

that a unit of age t i 1 survives -- that is,

X. = number of trials to failure of a unit of age t

where the possible values of X* are assumed to be 1, 2, ... ,N N.. The
1 1

0 distribution G! of X? is then given by:; 1 1

..(k) = (l-q i) for k = 1, 2, ... , Ni,

~(Nt) =0.

- The information available for estimating q, consists of nFn(ti.)

* observations on X.: of these, D. are equal to Ni, nP (t.) are equal to N.,
1 1 1 n 1

and for all s. in the interval (t i-,ti], C. iare equal to the number

. #{m: t il<x :5s. }. The resultant maximum likelihood estimator of qi is

.. precisely ji defined above.01

It is evident that the estimators l, ., qn have the form of the usual

maximum likelihood estimator of a geometric parameter -- that is,

Estimated failure rate =number of failures observed
total time on test

* Moreover, we note that this is the form of the failure rate estimators in the

- intervals (t 0 ,tl], .. (t ,-) defined for the Piecewise Exponential Estimator

(PEXE) of Kitchin, Langberg and Proschan (1983). In terms of our notation

(modified for continuity), the PEXE is defined as follows:

...... ... .....-.. ..... ,..
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1 fort< Oorn 1 =0,

i-i
e xp[ (t'-1 T#Tlexp[ (tj--tj.), ]

(2.5) P*(X>t) for ti 1 < t - ti, i = 1, ... , n1, n1 > 0,

n

-Texp[ -(t -t.
j=l 1

for t > t n 1 >0,

where
X= I/y for i = 1, ... ,

t.

Y= nn(u)du for i = 1, ... , n1.t.
i-1

For i = 1, ... , n, Xi is the failure rate in the interval (til,t i ] and yi is

the total time on test in this interval.

The PEXE is a piecewise exponential function because its construction

is based on the assumption of constant failure rate between observed failures:

just as a constant discrete failure rate characterizes a geometric distribution

so a constant continuous failure rate characterizes an exponential distribution.

Thus the PEGE is the discrete counterpart of the PEXE.

Returning to our introductory discussion about the desirable features

of survival function estimators, we now compare the PEGE with other estimators

in terms of these and other features.

First, the PEGE is intuitively pleasing because it reflects the continuity

inherent in any life process. The Kaplan-Meier and other estimators that are

step functions do not have this property.

.'- ' -. -'- .:.< -'-..:.- - :-'-/ ,..-.- <-- - '- - -':'..- ".-: -. ' .- :--.-.- .- ,-'-. ' -. :.:--- ",'. , :. 'i-.-. . '.-, -.- ' , -.
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Second, we note that the PEGE utilizes interval information from both

censored and uncensored observations. It is therefore more sophisticated than

the Kaplan-Meier and Nelson estimators. Moreover, none of the estimators of

Whittemore and Keller utilizes more information than does the PEGE.

Third, the PEGE provides a simple, useful estimator of the failure rate

function. While this estimator is naive compared with the nonlinear estimators

- of Whittemore and Keller, the PEGE has the advantage of being simple enough to

calculate by hand -- moreover it requires only marginally more computational

effort than does the Kaplan-Meier estimator.

Regarding the applicability of the PEGE, we note that use of the PEGE

is not restricted to discrete distributions because it can be easily modified

by linear interpolation or by being defined as continuous wherever necessary.

This is theoretically justified by the fact that the integer part of an exponen-

tial random variable has a geometric distribution: by defining the PEGE to be

continuous, we are merely defining a variant of the PEXE. The properties of

this estimator follow immediately from those of the PEXE.

Finally, apart from being intuitively pleasing, the form of the PEGE

allows reasonable estimates of both the survival function and its percentiles.

The Kaplan-Meier estimator is known to overestimate because of its step function

form. Ile show in a later section that the PEGE tends to be less than the

Kaplan-Meier estimator, and therefore the PEGE may be more accurate than the

Kaplan-Meier estimator. Whittemore and Keller give some favourable indications

in this respect. They define three survival function estimators that have

constant failure rate between observed failure times. One of these is the

PEXE, modified for ties in the data: the form of the failure rate estimator

is the same as the form of the PEGE failure rate estimator -- specifically,
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fori= 1, ... , n:

number of failures observed at t.
(2.6) Estimated failure rate in (t ,t] = 1

i-i 1 total time on test during (t1 1 t]

The second of these estimators is defined instead on intervals of the form

Et i1 ti) : for i = 1, ..., n1 , the failure rate estimator has the form:

number of failures observed at t
(2.7) Estimated failure rate in [t ti)= total time on test during t.i)l t)

The third of these estimators is obtained from the average of the two failure

rate estimators described by (2.6) and (2.7).

In a simulation study to investigate the small sample properties of these

* three estimators, Whittemore and Keller find that the first estimator tends to

underestimate the survival function while the second tends to overestimate the

survival function. From these results, we expect the PEGE to underestimate the

survival function and its percentiles. Whittemore and Keller do not record

further results for the first two estimators: however, they do indicate that,

in terms of bias at extreme percentiles, variance and mean square error, the

-* third estimator tends to be better than the Kaplan-Meier estimator.

The implications for the discrete version of the third estimator are that,

in terms of bias, variance and mean square error, it will compare favourably with

* the Kaplan-Meier estimator. An unanswered question is whether the performance

" of this estimator is so superior to the performance of the PEGE as to warrant

*the additional computational effort required for the former.

Section 3: Asyimtotic Properties of the PEGE.

This section treats the asymptotic properties of the PEGE and of the

corresponding failure rate function estimator. The properties of primary
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interest are those of consistency and asymptotic normality: secondary issues

are asymptotic bias and asymptotic correlation.

Initially considering a very general model, we obtain the limiting function

of the PEGE and show that the sequences { (X>xk) k 1 and {^n(X=x IX2xk)'k..1

converge in distribution to Gaussian sequences. We then explore the effects of

making various assumptions about the lifelength and censoring random variables.

Under the most general model, the PEGE is not consistent and the failure rate

estimators are not asymptotically uncorrelated: a sufficient condition for

consistency is independence between corresponding lifelength and censoring

random variables, and a sufficient condition for asymptotically independent

failure rate estimators is that the censoring random variables be identically

distributed. However, it is not necessary to impose both of these conditions

in order to ensure both consistency and asymptotic independence of the failure

rate estimators: relaxing the condition of independent lifelength and censoring

random variables, we give conditions under which both desirable properties are

obtained.

Before investigating the asymptotic properties of the PEGE, we describe

the theoretical framework of the problem, give some notation, and present a

preliminary result that facilitates the exploration of the asymptotic properties

of the PEGE.

The probability space (9,A,P) on which all of the lifelength and censoring

random variables are defined is envisaged as the infinite product probability

space that may be constructed in the usual way from the sequence of probability

spaces corresponding to the sequence of independent random pairs (X 1 ,Y I ),

(X2 ,Y2) .... Thus Q consists of all possible sequences of pairs of outcomes

corresponding to pairs of realizations in Xx V: the first member of each pair
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" corresponds to failure at a particular time and the second member of each pair

* corresponds to censorship at a particular time -- that is, for each w in n,

k = 1, 2, ... and j = 1, 2,...
th

(XiYi)(W) = (Xi(W),Yi(w)) = (xkYj) if the i element of the

infinite sequence w is the pair of outcomes corresponding to

failure at xk and censorship at yj.

The argument w is omitted wherever possible.

Two conditions are imposed on the random pairs (X1 ,Y1 ), (X2,Y2)

(Al) There is a distribution function F such that

1nlim P xk  F(xk) for k 1, 2,
ni ~ P(Zi sk) . .n-* i~l

(A2) There is a subdistribution function F such that

lim I P(Zi<Xk, 6.=1) F xk )  for k 1, 2,
n-1 i=l I F

It is evident that a sufficient condition for (Al) and (A2) is that the

censoring random variables be identically distributed.

Definitions of symbols used in this section are given below. Assumptions

'* (Al) and (A2) ensure the existence of the limits defined.

Let Pki =P(Zi=xk, 6.=1) for k = 1, 2, ... and i =1, ... ,n,

Ri= P(Zi=Xk- =i:0) for k 1 1, 2, ... and i 1 1, ... ,

.k -lim n =ki = F l (xk) - F (xk " ) fork = 1 2

Rk - li 'm ! for k 1, 2,k. ..i.....
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The proposition below is fundamental: it asserts that, with probability

one, as the sample size increases to infinity, at least one failure is observed

* at every possible value of the lifelength random variable. First, we need a

definition.

Definition 3.1. Let Q* c a be the set of infinite sequences which contain, for

each possible failure time, at least one element corresponding to the outcome of

observing failure at that time -- that is,

Sn* = (w: (Vk)(3n) X ) - Xk, Y((w) = x} x •

Proposition 3.2. P(Q*) = 1.

The proposition is proven by showing that the set of infinite sequences

that do not contain at least one element corresponding to the outcome of

observing failure at each possible failure time xk has probability zero --

- that is,

'. Pn { , Yik}cj 0 for k =1, 2,....

As the pairs (X1,Y1), (X2 ,Y2), ... are independent, this is equivalent to

proving the following equality:

n
(3.1) lira TC1- P(X.=xk, Y.>xk)) = 0 for k = 1, 2,....

Since TT(l-pi) = 0 if and only if p = -, where {p.}'.. is any sequence of
' ~~i=lil i

probabilities, and since (A2) implies that

:P(Xi=Xk, Y = for k = 1, 2, ... , we have (3.1).

,° .--. -°" "....." . ' .'i-.... ".'-.-
. . ..
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The importance of the preceding proposition lies in the simplifications

it allows. It turns out that, on 1* and for n large enough, the PEGE may

* be expressed in simple terms of functions that have well-known convergence

properties. Since P(*) = 1, we need consider the asymptotic properties of

the PEGE on 0* alone: these properties are easily obtained from those of the

well-known functions.

In order to express the PEGE in this convenient way, we view the estimation

procedure in an asymptotic context.

Suppose w is chosen arbitrarily from Q*. Then, for each k, there is an

-- N (depending on k and w) such that Xi(W) = x. and Y.() > x. for j = 11-j 1 J

S"k and some i < N. Consequently, for n >- N, the smallest k distinct observed

failure times t1 , ..., tk are merely x1 , ..., xk, and, since the set of possible

censoring times is contained in X, the smallest k distinct observed times are

also x,, ... , x.. The first k intervals between observed failure times are

simply (O,x1], (XljX2, ... , (xk-l,xk], and the function Ti n defined on the
1 ,f

th
h interval is given by the number of units on test just before the end of the

* th
i interval -- that is,

(3.2) T. = nF (x.) n (x.) for i = 1, ... , k and n a N.
i,n n 1 n i-l

th
* Likewise, we express the function Di  defined on the i interval in terms1,n

of the empirical subdistribution function F; as follows.

(3.3) Din = nF i  - xi- )3  for i = 1, ... , k and n a N.

As the PEGE is a function of Di and T., it can be expressed in terms
i~n i,n'

of the empirical functions F and Fl. Specifically, on a*, for any choice of

k, there is an N such that

p... . . . . . . **.. 
. . . . . . . . . . . . . . . . . . . . .

- * -
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1 1,

k~ F (x.)-F (x.~
Pn (X>xk) = 1T(i- n 1 i 1 for n N.

n ii--l

* Consequently, taking the limit of each side and using Proposition 3.2, we

have: n n n J 1Sk F Cx.)-F (X=l
P lim A CX>Xk) lim T 1 - for k 1, 2,. = 1.n n-- i= 1Fn (X i-1)

r, In exploring the asymptotic behaviour of the PEGE, therefore, we consider

the behaviour of the limiting sequence of the sequence

(1 F(x.)-F (xil)

fl 3 n Jk1i--n n(i-1 )  k;1

The proofs of the results that follow are omitted in the interest of

brevity. The most general model we consider is that in which nnly conditions

• (Al) and (A2) are imposed. The following theorem identifies the limits of

the sequences {PnCX=xklXaxk)1 and {n(X>xk)n=l. for k = 1, 2, ... and

establishes that the sequences Pn (X=XktX>xk)1kl and {Pn(X>Xk)1k.l converge to

, Gaussian sequences.

Theorem 3.3.

(i) With probability 1,

F (xk)-F(k.)fok=1,2
,-.- .Fi xk-1 )

Slir Pn(X=xkIXtxk) for k =1, 2
Dn-*w P(Xk. 1 )

(ii) With probability 1,

lim P (1 1 )2kr[ F (x.)-Fl(xi ) l

°DliraP CX = TTL~ Ii- Jfor k I, 2, ...n.X>xk) T . =
..-. -
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(iii) Let kl, .., kM be M arbitrarily chosen integers such that

k < k < .. < kM .  Then

(Pn(X=Xk XX ,... ,P (X=xk IX-Xk ) is ANQ -,I )
1 1 n M Mn

where

= (P k](xk 1)"'.", kM/F(xkM- ))."

= {a" *
qr q=l,...,M

r-1,... ,

q r-1

o* = PkqPk q 1 (akj'k; okM~ki'kj Ikik(kj + kMki'kM4.kVqr kq kr i=l = l k~ ikMA kMAs

(F(xk _llFx k ))
q r

r-(aOkM4kq~ki • ~kq~~4 )(C( xk _l)) 2-(k_ )

+ Pk i=l + M k(kkq) / ))

q i=1 ir q ''r r q

+ akM kq'k /(F( Xkq 1)P(Xk _)) for q S r.
k I q Skr q r
n

imt p (1-P.) for q r, q = 1....M.
n- i=k q kqpi

-limp for q < r, q = 1, ... , M, r = 1, ., M.

n-~i=1q rn+

aqr -lim P iRki for q = +I, ... 2H, r 1, ... , N.

n-*w i q r'

-imn R ( for q r, q = M+, .. , 2M.

n llk qMi kM9i . 2.

-lim . j R i for q, < r, q M= 1+ , .. .21, r 14+ , M.

'.' .... ~ ,. ...... ., .. . .. ..- .- .-- . " . ' "" . . ' . . .... ' " . " "" " " ' " ' " -" ". "" "-". -



19

(iv) Let kl, .... kM be M arbitrarily chosen integers such that

k <1c2 < ... < kM. Then

CPn(X>xk ),...,P n(X>xk)) is AN
1 M

where

* - (lP x 1 Pi/F(i-l)

= a**)
qr q=l,...,M

-- r=l,..,

k k k k
= 4-/(r q ra** = (1-Pi/F(xir l TT (jl' 1-P /P (x I I) a*l /[(l-'ef/(xe-l)(1-Pm/P(Xm-1))]

qr i=1 i xi-ll))T( j -1j.. Z=1 m=l tmmr-i

for q r.

It is evident from the theorem above that the PEGE is a strongly consis-

tent estimator of the underlying survival function if and only if

.Fl(xk)-F1(Xkl) P(X=x )

(3.4) = for k = 1, 2,
F(xk-l P(X-!xk)

The theorems below give conditions under which this equality holds. As for

correlation, it is evident from the structure of the PEGE that any two elements

of the sequence {Pn(X>xk)k=1l are correlated. Consequently the matrix E**

cannot be reduced to a diagonal matrix under even the most stringent conditions.

However it turns out that, under certain conditions, the asymptotic correlation

between pairs of the sequence {Pn (X=xk X1xk)ll} is zero -- that is, E* is a

diagonal matrix.

The following theorem shows that independence between lifelength and

censoring random variables results in strongly consistent (and therefore

i , , ~~~~........................,-.. . .,,,....... ..... ,................-.................-.....,.

".".'"" -'" ' ." "'"" .' .....................................-.. '' '. , .- . ... L .. "....'.. -
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asymptotically unbiased) estimators. However any pair in the sequence

{Pn(X=Xk{xk)Ikl is asymptotically correlated in this case. Since the

matrices Z* and E** have the same form as in the theorem above, they are not

explicitly defined below.

Theorem 3.4.

Suppose

(i) the random variables X. and Y. are independent for i 1, 2,.

and

(ii) there is a distribution function H such that

KL In
lim P(Y:xk) -- H(xk) fork= 1, 2,....

- n i=li

Then

(iii) Fl(xk) = PCX=xi)R(Xil and F(xk) = P(X>xk)Ii(xk) for k = 1, 2,

(iv) With probability 1,

lim Pn(X>k) = G(xk) for k = 1, 2,....

(v) (Pn(X=X a ,... , CX=x >yk is

where k k IXx s<~jE)1 -
1

where kI < k2 < o.. < kM are arbitrarily chosen integers and

= (P(X=xk tX>Xk ),...,P(X=xk X 'Xk '

1 1NI M
(vi) (PXxkX>xk is AN 1**,--**)

1(~kI) "P M n

where k < k < < k are arbitrarily chosen integers and
1 2 * M

= (P(X>x ,... ,P(X>x k )).

....

I~~~ /I.IIiIiiiI/........



A sufficient condition for (Al), (A2) and assumption (ii) of the

.* preceding theorem is that the censoring random variables be identically

distributed. In this case the failure rate estimators are asymptotically

* independent and the matrix Z** is somewhat simplified. The conditions of

the following corollary define the model of random censorship widely assumed

in the literature.

Corollary 3.5.

Suppose

(i) the random variables X. and Y. are independent for i = 1, 2,

and
(ii) the random variables YI. Y"', are idcntically distributed.

Then

(iii) with probability 1, lim Pn(X>Xk) =G(xk) for k = 1, 2,

(iv) (P(X=xk tXaxk ),.. .,P(X=xk IX-Xk)) is AN(,-.!E

* where

*= (P(X=xk I XXk )""'P(X=xl, IX;xk )

qr q=l,...,M

(PX=k IXXk )P(X>xk IX-"xk )/F(xk -1 fot q = r.
q*q q q q

qr

for q 9 r.

1

(v) (Pn(X>Xk ),...,Pn(X>Xk n AS,
11

where

ti:-:,--:-:-.:.-:-.:---:-.-:..---. :-::.-- ,:......................................-...-..--.-.-..-,-.-..-.....--.-.,..-.--...
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( * P(X>xkl1),..,P(X>Xk M)

!il 7.**- ,fco**1t
? - "qr q=1,... ,M

] ~r=l,. .... ,

k

a** P(X>xk )P(X>xk ). P(X=xilX->xi)/EF(x] 1)P(X>x IXx])J for q < r.
qrq r i=1

Having dealt with the most restrictive case in which the lifelength and

censoring random variables are assumed to be independent, we now consider

relaxing this condition. It turns out that independence between corresponding

lifelength and censoring random variables is not necessary for asymptotic

independence between pairs of the sequence of failure rate estimators: if the

* censoring random variables are assumed to be identically distributed but not

necessarily independent of the corresponding lifelength random variables, then

* the failure rate estimators are asymptotically independent. However both the

survival function and failure rate estimators are asymptotically biased. The

* following corollary expresses these facts formally.

* Corollkry 3.6.

Suppose

(i) the random variables YI. Y 2. are identically distributed.

*Then

(ii) Pk = P(Z=xk, 6=1) and F(xk) = P(Z>xk) for k = 1, 2,

(iii) n(x=x k IXxk ),..,@ ( kxX IXxk i )) is
• 1 K1 n K M~n

where

= (Pk/P(xkl).. ,Pk/P( _)),
k k 1...........
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"* {e*.}ii

j=l,. .. M

* Pk.(-Pk./F(xkl1))/(F(xkI))
2  for i =

1J
0 for i ; j.

(iv) (Pn(X>xkl) ,...,Pn(X>xk ) is
n k1 P(xkM i

where

(k1  k) JM-~f

k. k M ki

k. - 2x.))T(l-P (x I P ,'(F(x )) (1-P /P(x
L 1 i- -) r=1 r r-l

for j - l.

The corollaries above give sufficient (rather than necessary) conditions

for the two desirable properties of (i) consistency and (ii) asymptotic inde-

*. pendence between pairs of the sequence of failure rate estimators

({P n(X=xk Xxk))kl. The final corollaries show that both of the conditions of

Corollary 3.5 are not necessary for these two desirable properties: the con-

ditions specified in these corollaries are not so stringent as to require that

corresponding censoring and lifelength random variables be independent (as in

Corollary 3.5), but rather that they be related in a certain way.

.. ... ......... . . . . . . . . . ..
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Corollary 3.7.

if the random variables YI, Y2. "." are identically distributed, then vrith

. probability 1,
lir Pn (X>xk) = Cxk) for k = 1, 2,

if and only if

P(Y i - ,x : xk) =P(YiaxkIX2xk) fork =1, 2, ... and i 1, 2,

Corollary 3.8.

Suppose

(i) the random variables YI Y2, "'" are identically distributed

and
(ii) P(Yi xkIX=xk) = P(Yi -xkIX'-xk) for k = 1, 2, ... and i = 1, 2,

'Men

(iii) (Pn(X=xk IX>Xk ),...,P n(X=X k X>XkM)) is AN(u*,iL* )

where

(P(X=xk IX>Xkl), ... , P(X=X -IX2x I ,

{a1

j--l,. . M

{(X= X2:k)P(X>xk IXxk )/P(xk.l) fori =jo
iii

for i 0 j.

(iv) (P(" xk ),...,P n(X>Xk )) is AN(p **)

where

= {OjXJxk ... PXX

k.

i** 1PCX>x 1 )P(X>x.Xx)] for !5,XZ.
k. 1k

g2

.'...................................

• - "
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The last two corollaries are of special interest because they deal with

consistency and asymptotic independence in the case of dependent lifelength

and censoring random variables -- a situation that is not generally considered

despite its obvious practical significance. Desu and Narula (1977), Langberg,

Proschan and Quinzi (1980) and Kitchin, Langberg and Proschan (i983) consider

- the continuous version of the model specified in the last two corollaries.

The coneition specifying the relationship between lifelength and censoriig

random variables is in fact a mild one: re-expressing it, we have the following

condition.

P (X=xk I X>-xk,Yi -xk) P (XvXk)
-- fer"l, , ,... ak d i = l 2...

P(X>Xk IX-xk,YiXk) P (Xxk)

This condition specifies that the failure rate among those under observation

at any particular age is the same as the failure rate of the whole population

of that age. It is evident both intuitively and mathematically that this is

a flmdamental assumption inherent in the process of estimating a life distri-

bution from incomplete data: if this assumption could not be made, the data

available would be deemed inadequate for estimating the life distribution.

. Formally, it is the fact that the condition is both necessary and sufficient

-i for consistency that indicates that it is minimal far the estimation process.

It is clear, therefore, that the last two corollaries play an important role

in estimation in the context of a practical model more general than the statis-

.- . tically convenient, but unnecessarily restrictive, model of random censorshin.

Section 4: 'The PFGE Coripa-x.._ i_.ih Riv-is.

In Section I tie motivate the construction of the PEGE by describing some

d.sirible proTprties of nonparanetric suivival funvt.ion estimators and then

.azationingv tha, tie cor,-monly ase estimator cf Kaplan anrd rIer i938) does

............, -... .--...... ..... .. w ... '.". ".".".".. .v".","" .". "..' ' '/ '..,l .. ...
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.t fare well in terms of these properties. We now compare the PEGE with the

Kaplan-Meier estimator.

We begin with the most obvious desirable features of survival function

estimators and then consider statistical and mathematical properties. In

-. comparing the two estimators, ve find that the issue of continuity arises and

that the PEXE enters the comparison. The section ends with an example using

real data. The subsequent section continues the comparison: we discuss the

results of simulation studies.

The Kaplan-Meier estimator (KIE) of the survival function of the life.-

length random variable X is defined as fcllows:

1.for n1 =0 or t < tl, n 1 2 1.

• i- 1

.P (X>t)~ = "= n 3  -'

n1
=1•j~T ClDj/nFn(tC)) for t -> tnl n1 a 1

To the prospective user of a survival function estimator, two fundamental

questions are, firstly, does the estimating function have the appearance of a

survival function, and secondly, is it easy to compute?

Considering the second question first, we observe that calculating the

* PEGE involves only marginally more effort than calculating the KME. Therefore,

both estimators are accessible to users equipped uith only hand calculators.

The first quzstion is a deeper one. If tho sm.il, is sm.il or if there

are many ties among the uncensored observations in a large sample, the K4E

" has cnly a few steps and consequantly appears unrealistic. The PEGL, in

contrast, reflects the continuity inherent in any life process by dccrearing

...............................o.. .



, -. every possible failure time, not only at the observed failure times. As

the number of distinct uncensored observations increases, both -.-M FEGE -.nd

the KE become smouther: the many steps of the KE do allew it the appearance

of a survival function, except possibly at the right extreme -- there is

no way of extrapolating very far beyond the range of observation if the K1E

is used. (There are several ways of extrapolating from the PEGE.) At face

value, therefore, the PEGE is at least as attractive as the KME.

A related consideration is -;Iiehe. tae estinator proides a reali.tiz

estimate of the failure rate function. The KE, being a step function, does

not. The seriousness of this omission becomes more appareivt when the KT

_ failure rate function is examined from a user's point of view: if an item of

ag2 t has a (perhaps large) chance of failing at it5 age, then claiming that

* a slightly older (or slightly youtnger) item cannot fail at its age seems

i-nrasonible, parti4.ular!y when it becomes evident that the claim is .na.e on

. the grounds that none of the items on test happened to fail just after (or

just t;.ore) time t. Intuitively -- or from a rtPequeintist's point of vkeW --

the very fact that one of the items on test failed at time t makes it less

likely that another it-m in the sample will fail soon after L because the

observed failure times should be scattered along the appropriate range

according to the distribution function. Cloarly, then, the gaps between

*observed failure times are a result of the fat that the sample is finite

*) and are not indicative of zero (or very small) failure rates.

The PEGM, on the other hand, is coaistru.ted so that a failure at time t,

say, aFfects the failure rate in the gap Obfure t. Thus the PEGE compensates

* for the lack of observations at the possible (but unobse:red) failure times.

fhe resui'Cint failure rate function, bei , a step fun:tio'n, is still naive, but

- - -- - -.
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i- does at least take into account the continuity of life processes and it does

provide reasonable estimates of the failure rates at all possible failure times.

A more aesthetic -- but none the less important -- issue is that of infor-

mation loss. Here the PEGE is again at an advantage. Although interval infor-

mation about the uncensored observations is used in spacing out the successive

values of the KME, the failure rate estimators utilize only ordinal information.

Moreover, the only information utilized from the censored observations is their

positioning relative to the uncensored observations. Thus the information lost

by the KME is of both the ordinal and interval types. In contrast, the PEGE

failure rate estimators use interval information from all the observations: in

particular, the positions of censored observations are taken into account

e:recisely. In terms of information usage, then, the PEGE is far more desirable

than the KME.

An apparently attractive feature of the KME is that its values are invar-

iait under monotone transformation of the scale of measurement. The PEGE is

not invariant under even linear t.-ansformation. However, in the light of the

discussion about infoniation loss, it is evident that the K,.2.'s invariance, ad

the PEGE's lack thereof, are results of their levels of sophistication rather

than properties that can be used for comparison.

Having noted that the step function form of the KMQE is not pleasing, we

now point cut that it is also responsible for a statistical defect, namely,

that the K tends to overestimate the underlying survival function aid its

* percentiles. The fact that the r12 consistently overestimates suggests that

its form is inappropriate. Some indications about the bias of the PEGE are

given by considering the relationship between the PEGE and the KME.

Under certain conditions (for example, if there are no ties among the

uncensored observations), the PEGE and the KE interlace: within each failure

interval, the PEGE crosses the K.!4E once from above. This is not true in

'- ° * .. . . . . . *.* *.* * . . • . . . .. . . . . .



general, however. It turns out that the KE may have large steps in the

pxcsence of ties. In the case of the PECE, however, the effect of the ties

is damped and the FEGE decreases slowly relative to the K1E. In general,

-. therefore, it is possible to relate the PECE and thD KME only in a one-sidcd

fashion: specifically, the PEGE at eny c.bserT'ed failur2 time iz larger than
the K? at at t tir.qe. Exanples have been constructed to show that, in general,

the PEGE cannot be bounded from above hy the KM2. I11e fellowing theorem

relates P (the PEGE) and P (the 10E).

Theorem 4.1.

(i) P(X>t.) z P(X>ti) for i = 1, ... , nI .

(ii) If n n(t.jl)!(n n(t.i ) +Wj_) - Dj/Dj_ for j 2, ... , 1,

whiore W. denotes the nuamber of censored observations at t. for j = 1, ... ,

then P(X>ti) : P(X>t_) for i = 1, ... , n
b1 1

It is evident that the condition in (ii) is met if there are no ties

among the uncensored observations: this is likely if the sample is small.

From the relationships in the theorem, we infer that the bias of the PEGE

is likely to be of the same order of magnitude as that of the K E. Further

inrjications about bias are given later.

Having considered some of the practical and physical features of the

PEGE and the KME, we turn briefly to asymptotic properties -- briefly because

the PEGE and the KME are asymptotically equivalent -- that is,

Pr(yk) lim P (X>-,) = lim Pn(Xk)1 1.

ii"" ' -(X-.s1 "  
= 1

-he practical implicition of this is that there is little :eason for strong

,Teirc nce of either the PEGE or the '1,Jl if the :a.ple ir very large.

- - . *... . -'- .- . - -.



We row compa~e the models assmed in using the KNZ- and the PEGE. Ir

the many studies of ttie KX, the most general model includes the afswption

of independence batiween corresponding li fe and censoring random variables.

* our most Eg'-nerai model dtos not include this assumption. However this

difference is not impoitant because Che assumption of" independence is used

*on~ly to facilitate the derivation of cL-r-cin asymptotic- properties of the

* K1ME: in fact, the definition of \.ilf Kr~E does not depend on this assump-.io,

and the KNE and the P&'.GE aie asymiptotically tcc.Wivaleitr Iuid-,r the conditicns

of the rlst general madel of thv PEGE. Trhcrei>r# this assu~mption is not

necessary for j:;ing V'.o PME.

The other difference bf:--woen t'l-e niot As a'ssuncd is 11'at the PEGE is

deasigned specifically for discrete jife cac* censoxing dist-ibutions w1dile

* the Kaplaa4teici- m~e~ akes ra sti-xaLtionF aboui: the svppori~s *uf trase

dis1-ributi~ns. Hc-aeve-r, distinguishing between cc-atinuous and di.-c~ete

rr~ndlia variatlcion this czni:ext is mcrcly a statistircel convenicc

in iZict. time% to ocuxrenco of sorte evrnt is Falways rwasure-. al1yag a cen-

Sscale, arld th~e SAt '.f Obscrvabk lu iE aI~lys crjumtabl.e beca'.tse

* it is defined by the precision of mcasur--nc 't. Sincn the process of esti-

mating a life distribu -*on neur~~easu~corw:n'nt, it alway~s entaiis tb&e

0 alslmtior of a discrete distributi.- ,n: iaa.etier the sup'o-:t of the eztimator

is c-.ntini~oixs or discre--e d-pards on the way the user verceives the scale

of~na~r,nt inpatc ,k-,efore, therc' nro nc d4 f:Zorences betwez-n

0(e -.odcl s under~ving the PEGL cflc. the ;OTF: the PW-.3T, is rppropriate whenever

thz KMB, is, Pnd vice versa.

l~aingr~i~zd ut thc the PC RZy LI Used for -stiriating co-7Lious

~' .'la!fiirtionr,3 an! havinp. 1drOu :JI.e PeMX! as Olhe C i~o~~~~e~

-* * oft i- I ve zJc ... 'J -i rot, u *nu.. .hL 1. -Z i
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,:cntinuous version of the PEGE because the construction of each is based on

the assumption of constant failure rate between distinct observed failure

times. The forms of the estimators differ because of the difference in the

* ways of expressing discrete and continuous survival functions in terms of

" failure rates. The PEGE and the PEXE are equally widely applicable since

a minor modification of the PEXE can be made to allow for ties. (This esti-

mator is defined in Whittemore and Keller (1983).)

The relationship between the PEGE and the modified PEXE, and their posi-

tioning relative to the KME, is sunmarized by the following theorem and the

succeeding relationship.

Theorem 4.2.

Let P**(X>t) denote the modified PEXE of the survival probability

P(X>t) for t > 0.

(i) P(X>t) < P**(X>t) for t > 0.

(ii) If nPn(tj-1)/(npn(tj 1) +W . 1) < Dj/Dj.1 for j = 2, ... i, where

W. denotes the number of censored observations at t. for j = 1, ... n,J J'

then P**(X>ti) £ P(X>t. 1 ) for i = 1, ..., n

From Theorems 4.1(i) and 4.2(i), we have:

P(X>t.) P(Xt.) < P**(X>t) for i = 1, ... , nI.

Consequently, if the condition in (ii) above is met (as it is when there are

no ties among the uncensored observations), both the PEGE and the PEXE inter-

lace with the KME: in each interval of the form (ti ,til, the PEGE and the

PEXE cross the KME once from above. Practical experience suggests that the

condition in (ii) above is not a stringent one: even though this condition

is violated in many of the data sets considered to date, the PEGE and the

.. . . . . . ....

........................
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PEXE still interlace with the KME in the manner described. Another indication

from practical experience is that the difference between the PEXE and the PEME

is negligible, even in small samples.

Finally, we present an example using the data of Freireich et al. (1963).

The data are the remission times of 21 leukemia patients who have received

6 MP (a mercaptopurine used in the treatment of leukemia). The ordered remis-

sion times in weeks are: 6, 6, 6, 6+, 7, 9+, 10, 10+, 11+, 13, 16, 17+, 19+,

20+, 22, 23, 25+, 32+, 32+, 34+, 35+. The PEGE and the KME are presented in

Figure 4.1. (Since the PEGE and the PEXE differ by at most .09, only the

PEGE appears.) The graphs illustrate the smoothness of the PEGE in contrast

with the jagged outline of the KME. The KME and the PEGE interlace even though

the condition in Theorems 4.1(ii) and 4.2(ii) is violated. Since the PEGE is

only slightly above the KME at the observed failure times and the PEGE crosses

the KME early in each failure interval, the KNE is considerably larger than the

PEGE by the end of each interval. This behaviour is typical. We infer that the

PEGE certainly does not overestimate: it may even tend to underestimate.

We conclude that the PEGE (and the modified PEXE) have significant advan-

tages over the KME, particularly in the cases of large samples containing many

ties and small samples. It is only in the case of a large sample spread over

a large range that the slight increase in computational effort required for

the PEGE might merit using the KME because the PEGE and the KME are likely to

be very similar.

o . .°...
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Section 5: Small Sample properties of the PEGE.

In this section we give some indications of the small sample properties

of the PEGE by considering three simulation studies. In the first study,

Kitchin (1980) compares the small sample properties of the PEXE with those

of the KME. In the second study, Whittemore and Keller (1983) consider the

small sample behaviour of anumber of estimators: we extract the results for

the KME and a particular version of the PEXE. In the third study, we make a

preliminary comparison of the KME and the PEGE. We expect the behaviour of

the piecewise exponential estimators to resemble that of the PEGE because

piecewise exponential estimators are continuous verions of the PEGE and, more-

over, riecewise exponential estimators and the PEGE are similar when the under-

lying life distribution is continuous.

The piecewise exponential estimator considered by Whittemore and Keller

is denoted Q4. It is constructed by averaging the PEXE failure rate function

estimator with a variant of the PEXE failure rate function estimator -- that

is, F is the same as the PEXE except that the PEXE failure rate estimators
Q4

A . are replaced by the failure rate estimators A*, ... , A* defined

as follows:

A!= i(A. + ) for i = 1, ., n1 ,:'< i -i

where

A. D./Total time on test in (t 1 .ti ] for i = 1, ... ,

= D./Total time on test in [t.,t. for i = 0, .. , n
1 1 i

S n n/Total time on test in [tna) if max Z. > tn{ 'llin 1

0 otherwise.

" " "" ' " "" "','2' .-'''''. - ,''.- .''.. - v '- '- "* . ..*.- -. .- ,-... -.-.. > , . . - . .- ... ,: -...,
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[. Although Whittemore and Keller include in their study the two estimators

[ and F constructed from X A., andX ... respectively, they

present the results for the hybrid estimator F alone because they find that

tends to be negatively biased and F tends to be positively biased.FQI  FQ2

The same model is assumed in all three studies. The model is that of

random censorship: corresponding life and censoring random variables are inde-

pendent and the censoring random variables are identically distributed. Whitte-

more and Keller generate 200 samples in each of the 6 x 3 x 4 - 72 situations

that result from considering six life distributions (representing failure

rate functions that are constant, linearly increasing, exponentially increasing,

decreasing, U-shaped, and discontinuous), three levels of censoring

(P(Y<X) % 0, .55, .76), and four sample sizes (n=l0, 25, 50, 100). Kitchin

obtains 1000 samples in each of a variety of situations: he considers four

life distributions (Exponential, Weibull with parameter 2, Weibull with para-

meter 1, and Uniform), three levels of censoring (P(Y<X) = 0, .5, .67), and

-. four sample sizes (n= 10, 20, 50). Kitchin's study is broader than that of

Wqhittemore and Keller in that Kitchin considers Exponential, Weibull

.* and Uniform censoring distributions while Whittemore and Keller consider only

* "Exponential censoring distributions. Kitchin apparently produces the greater

variety of sampling conditions because his results vary slightly according to

the model, while Whittemore and Keller find so much similarity in the results

* from the various distributions that they record only the results from the

Weibull distribution.

The conclusions we draw from the two studies are similar. Regarding mean

.- squared error (MSE), both Kitchin and Whittemore and Keller find that, in

general:

-- - - -
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(i) The MSE of the exponential estimator is smaller than that of the

,:. KHE.

(ii) As the level of censoring increases, the increase in the MSE is

smaller for the exponential estimator than for the KME.

Kitchin reports that (i) and (ii) are not always true of the PEXE and the KME:

the exceptional cases occur in the tails of the distributions.

The conclusions about bias are not so straightforward. Whittemore and

Keller find that the PEXE tends to be negatively biased while Kitchin reports

that the bias of the PEXE is a monotone increasing function of time: examining

his figures, we find that the bias tends to be near zero at some point between

the 40th and 60th percentiles except when the life and censoring distributions

thare Uniform. (In this case, the bias is positive only after the 90 percentile.)

We conclude that Whittemore and Keller merely avoid detailed discussion of bias.

Regarding the hybrid estimator, we find in the figures recorded some suggestions

of the tendencies observed in the PEXE -- specifically, monotone increasing bias

and a tendency for underestimation when the sample size is small and censoring

is heavy. Whether this behaviour is typical of the PEGE also remains to be seen.

In considering the magnitude of the bias of the estimators, we find the

following.

(i) Both Kitchin and Whittemore and Keller report that the bias of the

KME is negligible except in the right tail of the distribution and in the case

of a very small sample (n=l0) and heavy censoring.

(ii) The PEXE is considerably more biased than the KME.

(iii) The bias of Q is negligible except in the case of a very small
Q4

sample and heavy censoring.

(iv) The bias of each estimator increases as the censoring becomes heavier

and it decreases as the sample size increases.

............................... **.......*.. ..........
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In view of these two studies, we conclude, firstly, that the PEGE is

likely to compare favourably with the KME in terms of MSE, and secondly, that

the PEGE is likely to be considerably more biased than the KME. We expect

that the discrete counterpart of F performs well in terms of both MSE and
Q4

bias. Since the bias of this estimator is likely to be small, adjustment for

its presumed tendency to increase monotonically is deemed an unnecessary

complication.

In the pilot study we generate three collections of data, each consisting

of 100 samples of size 10, from independent Geometric life and censoring dis-

tributions. In each case the life distribution has parameter p = exp(-.1).

* The censoring distributions are chosen so as to produce three levels of censoring:

setting p = exp(-X), where X = .00001, .1, .3, yields the censoring probabilities

P(Y<X) = 0, .475, .711 respectively.

The conventions followed for extrapolation in the range beyond the largest

observed failure time are as follows:

""x for tn: k < sn

1 2P (X>k) = t
0 for k a n2 -tnl.

k-t
P(X>k) P(X>t )(1-4 n, for k tn n n

This definition of the KME rests on the assumption that the largest observation

is uncensored, while the definition of the PEGE results from assuming that the

* failure rate after the largest observed failure time is the same as the failure

rate in the interval (tn t l.
1- 1

Our conventions for extrapolation differ from those of Kitchin and of

Whittemore and Keller. Consequently our results involving right-hand tail

*probabilities differ from theirs: a preliminary indication is that our extra-

polation procedures result in estimators that are more realistic than theirs.

." o. °. .'1'..., .' .-'.. -. **.'... o *J . b. ° -'° ... , ." * ,o . " ,. * . . • . . -.. . .". . "% . ° o.... ... .
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Although the size of the study precludes reaching more than tentative

conclusions, we observe several tendencies.

Tables l(a), 2(a) and 3(a) contain the estimated bias and mean squared

error (MSE) for the KME and the PEGS of P(X>k) for k - p, where E is the
P p

pth percentile of the underlying life distribution and p = 1, 5, 10, 20, 30,

40, 50, 60, 70, 80, 90, 95, 99. From these tables we make the following

observations.

(i) The MSE of the PEGE is generally smaller than that of the KME, The

exceptions occur in the right-hand tail of the distribution under conditions

*of moderate and heavy censoring.

(ii) The MSE of each estimator increases as censoring increases.

(iii) The disparity in the WE of the two estimators becomes more marked

as the censoring increases -- that is, the MSE of the PEGE increases by rela-

* tively little as the censoring increases, except in the right-hand tail.

(iv) The difference in the MSE of the two estimators is smallest near the

median of the distribution.

(v) Both the KME and the PEGE generally exhibit negative bias: the mag-

nitude of the bias of each estimator is greatest around the median of the

distribution.

(vi) The magnitude of the bias of the KME is consistently smaller than

that of the PEGE only when there is no censoring. Under conditions of moderate

and heavy censoring, the KHE is less biased than the PEGE only at percentiles

to the left of the median: to the right of the median, the PEGE is considerably

less biased than the KME.

(vii) As censoring increases, the magnitude of the bias of the KME increases

faster than does that of the PEGE.

..-.................................... ...-..
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Tables l(b), 2(b) and 3(b) contain the estimated bias and MSE for the

Kaplan-=eier (KM) and piecewise geometric (PG) estimators of the percentiles

E , p = 1, 5, 10, 20, 30, 40, 50, 60, %, 80, 90, 95, 99. From these tables

we make the following observations.

(i) With a few exceptions, the PG percentile estimator is less biased

than the KM percentile estimator.

(ii) Both estimators tend to be negatively biased.

(iii) At each level of censoring, the bias of the PG percentile estimator

is negligible for percentiles smaller than the 70th, and it is acceptably

small for larger percentiles, except perhaps the 99th percentile. In contrast,

the KM percentile estimators are almost unbiased only for percentiles smaller

than the 60th: to the right of the 60th percentile the bias tends to be very

much larger than that of the PG estimators. This tendency is particularly

noticeable in the case of heavy censoring.

(iv) The MSE of the PG percentile estimator is smaller than that of the

K4 percentile estimator only in certain ranges, viz: p < 70 for heavy censoring,

p 5 40 for moderate censoring, and S : p -< 95 for no censoring. Since the PG

* percentile estimator is almost unbiased outside these ranges, the large MSE

* must be the result of having large variance.

On the basis of the observations involving the survival function esti-

* mators, we conclude that the small sample behaviour of the PEGE resembles that

of the PEXE: specifically, when there is little or no censoring, the PEGE

compares favourably with the KME in terms of MSE but not in terms of bias. We

expect that this is true irrespective of the level of censoring when the

sample size is larger. It remains to be seen whether inversion of this general

behaviour is typical when the sample size is very small and censoring is heavy.

! ~ *.* ... . . . . . . . ... .. ... ,.* ..... . ,, .. ,. .. ..... -,--.--
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It is evident that increased censoring affects the bias and the MSE of PEGE

less than it affects the bias and the MSE of the KNE.

Our conclusions about the percentile estimators are even more tentative

because of the lack of results involving the behaviour of percentile estimators.

The fact that the PG percentile estimator is almost unbiased even in the pre-

sence of heavy censoring, and even as far to the right as the 95th percentile,

is of considerable interest because the KM extrapolation procedures are clearly

inadequate for estimating extreme right percentiles.

Regarding the MSE, we note that, under conditions of moderate or heavy

censoring, any estimator of the larger percentiles is expected to vary consi-

derably because there are likely to be very few observations in this range.

' The ad hoc extrapolation procedure for the KM is expected to cause the estimators

of the extreme right percentiles to exhibit large negative bias and little

variation. In view of these considerations and the accuracy of the PG percen-

* tile estimators, we conclude that the fact that the MSE of the PG percentile

estimator of the larger percentiles is greater than that of the KM percentile

estimator is not evidence of a breakdown in the reliability and efficiency of

the PG percentile estimator.

The general indications of our pilot study are that the PEGE and the

discrete version of FQ4 are attractive alternatives to the KME. In view of the

resemblance between the properties of the PEGE and those of the PEXE, the

results for P.4 portend well for the new discrete estimator: we expect it to be

almost unbiased and to be not only more efficient than the KME but also more

stable under increased censoring. Moreover, we expect the corresponding

percentile estimator to have these desirable properties also because it is

likely to behave at least as well as the PG percentile estimator.
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The properties involving relative efficiency are of considerable impor-

tance because relative efficiency is a measure of the relative quantities of

information utilized by the estimators being compared. This interpretation

of relative efficiency, and the fact that heavy censoring is often encountered

in engineering problems, makes FQ4 and its discrete counterpart even more

attractive.
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,. Table 1. Results of Pilot Study Using 100 Samples of Size 10, Geometric
(p = exp(-.l)) Life Distribution, Geometric (p = exp(-.00001)) Censoring
Distribution and P(Y<X)= 0.

(a) Survival Function Estimators.

Estimated Bias Estimated MSE
Percentile PEGE KME PEGE KME

1 -.0184 -.0018 .0078 .0101
S -.0184 -.0018 .0078 .0101
10 -.0137 .0123 .0118 .0145
20 -.0172 .0092 .0161 .0182
30 -.0253 -.0053 .0194 .0225
40 -.0293 -.0118 .0255 .0279
50 -.0351 -.0196 .0271 .0278
60 -.0347 -.0159 .0223 .0257
70 -.0318 -.0185 .0176 .0212
80 -.0283 -.0187 .0108 .0133
90 -.0199 -.0167 .0047 .0060
95 -.0096 -.0028 .0028 .0049
99 .0029 -.0011 .0006 .0009

(b) Percentile Estimators.

Estimated Bias Estimated MSE

Percentile PEGE KME PEGE KME

1 .00 .63 .00 1.63

5 .21 .63 .35 1.63
10 -.21 -.37 1.69 1.37
20 -.08 -.32 3.00 2.38
30 .28 -.10 4.48 3.88
40 -.16 -.79 6.20 5.71
50 .53 -.08 9.57 9.72
60 -.62 -1.31 13.70 14.37
70 -1.35 -2.28 20.43 22.82
80 -1.87 -3.34 35.23 35.96
90 -2.29 -4.87 82.53 95.37
95 -2.20 -1.53 130.22 140.17
99 -5.01 -18.53 577.47 481.19

• . .° . '. .- -.. - . . . ..... • .. ..-. -. . ...'.. , .. ..- ., ." . .'. . %
--- -, ... -e L- - -.' L 

-
* 4 Mm.b~b -L . ,,,,.,,...* . .. .... -. .. . - ; -. - - .-C , * .



on. IF , 
1r7 VT

42

TAle 2. Results of Pilot Study Using 100 Samples of Size 10, Geometric
( p= exp(-.l)) Life Distribution, Geometric (p= exp(-.l)) Censoring Distribution
and P(Y<X) = .475.

(a) Survival Function Estimators.

_ __- Estimated Bias Estimated MSE
Percentile PEGE KME PEGE KME

1 -.0223 -.0018 .0077 .0101
S -.0223 -.0018 .0077 .0101
10 -.0207 .0106 .0124 .0157
20 -.0215 .0094 .0170 .0208
30 -.0282 -.0042 .0244 .0300
40 -.0432 -.0037 .0407 0502
50 -.0509 -.0230 .0475 .0601
60 -.0564 -.0442 .0430 .0634
70 -.0553 -.0800 .0333 .0603
80 -.0368 -.0707 .0229 .0413
90 -.0060 -.0590 .0124 .0151
95 .0082 -.0401 .0082 .0049
99 .0149 -.0091 .0033 .0001

(b) Percentile Estimators.

Estimated Bias Estimated MSE
Percentile PEGE KME PEGE KME

1 .00 .80 .00 3.36
5 .19 .80 .33 3.36
10 -.34 -.20 1.66 2.76
20 -. 09 .08 3.69 5.36
30 .38 .80 7.40 9.84
40 .10 .64 12.62 17.24
so .77 1.43 20.97 25.21
60 -.20 .62 34.24 37.26
70 -.67 -1.44 64.85 36.28
80 -. 88 -2.73 128.02 52.21
90 -1.23 -8.92 302.31 121.66
95 -.60 -14.92 561.06 264.70
99 -2.30 -31.92 1497.30 1060.98

..........................................
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Table 3. Results of Pilot Study Using 100 Samples of Size 10, Geometric
(p= exp--.1)) Life Distribution, Geometric (p=exp(-.3)) Censoring Distri-
bution and P(Y<X) = .711.

(a) Survival Function Estimators.

Estimated Bias Estimated MSE
Percentile PEGE KME PEGE KME

1 -.0230 -.0018 .0077 .0101
5 -.0230 -.0018 .0077 .0101
10 -.0370 .0033 .0171 .0185
20 -.0582 -.0273 .0301 .0508
30 -.0714 -.0479 .0437 .0704
40 -.1150 -.1011 .0705 .1257
50 -.1232 -.1443 .0709 .1382
60 -.1006 -.2421 .0594 .1273
70 -.0702 -.2286 .0456 .0711
80 -.0347 -.1775 .0321 .0341
90 .0032 -.0907 .0187 .0082
95 .0173 I -.0498 .0125 .0025
99 .0206 -.0091 .0043 .0001

(b) Percentile Estimators.

-_ _Estimated Bias Estimated MSE
Percentile PEGE KME PEGE KME

1 .10 .87 .52 3.27
5 .24 .87 .68 3.27
10 -.41 -.13 1.37 2.53
20 -.08 .52 3.22 7.86
30 .29 .76 7.19 8.82
40 -.20 -.10 15.16 9.56
50 .48 .16 28.06 10.86
60 -.47 -2.38 50.99 16.66
70 -.78 -4.91 90.72 36.07
80 -1.11 -8.54 167.67 84.44
90 -1.68 -15.53 357.58 252.63
95 -1.25 -21.53 619.71 474.99
99 -3.34 -38.53 1508.06 1496.01
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